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M. Brockmann
(G-16.04, 439-2541, michael.brockmann@physik.uni-wuppertal.de)

Theoretical Solid State Physics, WS 08/09

11th practice sheet
Closing date: 15.01.2009, at 1:00 pm into the PO Box

24. Ginzburg-Landau theory (10 points)

Ginzburg and Landau postulated the existence of a wave function Ψ(~r) describing the phenomenon of
superconductivity:

|Ψ(~r)|2 = ns(~r), (1)

where ns is the density of superconducting particles (mass m∗, charge e∗). For the enthalpy density
they made the ansatz:
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gn(T, 0) is the enthalpy density in the normal state. ~B = ~∇× ~A is the magnetic field in the supercon-
ductor. The enthalpy depends on the temperature T and the external magnetic field H. The condition
that the enthalpy G =

∫
V

d3rgs(~r) is minimal leads to the thermodynamics of the superconducting
state.

(a) First of all consider the case ~A = 0, Ψ(~r) = const. 6= 0 and calculate a and b in terms of the
particle density ns and the critical field Hc.

(b) In order to analyse the effects of surfaces we readmit spatial variations of Ψ(~r) and ~A(~r) 6= 0.
From the variation of G respect to Ψ∗(~r) and ~A(~r) it follows
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Prove these equations.
Hint: The first step is an integration by parts to eliminate terms with∇Ψ∗. Note that surface terms
vanish upon local variations. For the proof of the second equation use the identity div (~a ×~b) =
(rot~a) ·~b− ~a · (rot~b) for any ~a, ~b and Gauss’s theorem.

(c) Consider a superconductor in the half space x > 0 and a normal conductor in the other half
space x < 0. The equation (3) is reduced to a one-dimensional differential equation. Set f(x) :=
Ψ(x)/|Ψ(∞)| and solve the differential equation with the ansatz f(x) := A tanh(α(x − x0)).
Calculate A, α and x0.

25. Bogoliubov transformation (10 points)

Let H be a non-diagonal Hamiltonian (in momentum representation):
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where ∆ and g are constants and ckσ, c†kσ, σ = ↑, ↓ are fermionic creation and annihilation opera-
tors: {ckσ, c†k′σ′} = δkk′δσσ′ . The symbol {·, ·} is the anticommutator. The goal is to diagonalize this
Hamiltonian.

(a) Show that the following operators

αk := ukck↑ − vkc†−k↓, α†k := u∗kc†k↑ − v∗kc−k↓, (6)

βk := u∗kc†−k↓ + v∗kck↑, β†k := ukc−k↓ + vkc†k↑, (7)

fulfil the relations

{αk, α†k′} = {βk, β†k′} = (|uk|2 + |vk|2)δkk′ , (8)

{αk, αk′} = {βk, βk′} = {αk, βk′} = {αk, β†k′} = 0. (9)

(b) Which condition do uk and vk have to satisfy, so that αk and βk are fermionic annihilators?

(c) Express the four c-operators by the α- and β-operators.

(d) Let uk and vk be real. Write the Hamiltonian H in terms of α- and β-operators.

(e) Which second condition do uk and vk have to satisfy, so that the Hamiltonian H is diagonal.

(f) Use the two conditions from part (b) and (e) to calculate uk and vk and write down the Hamil-
tonian as simply as possible.

The transformation in part (a) is called Bogoliubov transformation for fermions.


