Exercise 1 for Theoretical Solid State Physics in WS 2012

Yahya Oez (yahya_oez@msn.com G.11.07) Submission: 17.10.2012

Discussion: 19.10.2012

1. Quantum Mechanics (15 Points)

(a) The Stationary Schroedinger Equation is

 $\mathbf{H}\left(\{\vec{\mathbf{r}}_{j},\vec{\mathbf{p}}_{j}\}\right)\psi\left(\{\vec{r}_{j}\}\right)=E\psi\left(\{\vec{r}_{j}\}\right).$

Show that you can write this equation in one dimension for a particle of mass m in a potential V(x) as

$$\psi''(x) = (u(x) - \epsilon)\psi(x), \qquad \epsilon = \frac{2m}{\hbar^2}E, \qquad u(x) = \frac{2m}{\hbar^2}V(x).$$
(1)

- (b) Solve equation (1) for an incoming wave from the left with $\epsilon > u(x) = 0$.
- (c) Solve equation (1) for

$$u(x) = \begin{cases} 0 & -d \le x \le d \\ u & \text{otherwise} \end{cases}, \quad d, u > 0.$$

Consider explicitly the cases $0 < \epsilon < u$, $\epsilon = u$ and $\epsilon > u$. Which equations do you get, if you use the continuity conditions?

(d) Consider the potential

$$u(x) = \begin{cases} 0 & -d \le x \le 0\\ u > 0 & 0 \le x \le d\\ \infty & \text{otherwise} \end{cases}.$$

- i. Solve equation (1) for all 3 cases. Which equations do you get, if you use the continuity conditions?
- ii. Sketch qualitatively the solutions for $0 < \epsilon < u$ and $\epsilon > u$.
- iii. Now let d = 3 and u = 10. How many solutions exist for $0 < \epsilon < u$ and what are the energy eigenvalues for ϵ .

2. Face centered tetragonal structure (2 Points)

The tetragonal face-centered structure do not appear explicitly in the list of the 14 Bravais lattices. Why? How can you describe these lattices as one of the 14 Bravais lattices?

3. Symmetries of unit cells (3 Points)

Find all symmetry axes and planes of the simple cubic lattice and the hexagonal Bravais lattice.