FQM problem Sheet 4 in WS 2022/2023

Prof. Dr. Andreas Klümper (kluemper@uni-wuppertal.de D.10.07) Svyatoslav Karabin (karabin@uni-wuppertal.de D.10.01)

Submission: 09.11.2022, 18:00 in the P.O. Box Karabin on D.10

Discussion: 11.11.2022, 10:00 - 12:00

1. Gordon Identity (8)

Show that the solutions of the Dirac equation in momentum space satisfy the following identity:

$$\bar{\psi}(p')\gamma^{\mu}\psi(p) = \bar{\psi}(p') \left[\frac{p'^{\mu} + p^{\mu}}{2m} + \frac{i\sigma^{\mu\nu}q_{\nu}}{2m} \right] \psi(p),$$

where $q=p'-p, \ \bar{\psi}(p)=\psi^\dagger(p)\gamma^0$ and $\sigma^{\mu\nu}=\frac{i}{2}[\gamma^\mu,\gamma^\nu],$ as well as $(\not p-m)\psi(p)=0.$

2. Bilinear Covariants (8)

Prove the following transformation laws:

(a)

$$\bar{\psi}'(\mathbf{x}')\psi'(\mathbf{x}') = \bar{\psi}(\mathbf{x})\psi(\mathbf{x})$$
 (scalar)

(b)

$$\bar{\psi}'(\mathbf{x}')\gamma_5\psi'(\mathbf{x}') = \bar{\psi}(\mathbf{x})S^{-1}\gamma_5S\psi(\mathbf{x}) = \det(\Lambda)\bar{\psi}(\mathbf{x})\gamma_5\psi(\mathbf{x})$$
 (pseudo-scalar)

(c)

$$\bar{\psi}'(\mathbf{x}')\gamma^{\nu}\psi'(\mathbf{x}') = \Lambda^{\nu}_{\ \mu}\bar{\psi}(\mathbf{x})\gamma^{\mu}\psi(\mathbf{x})$$
 (vector)

(d)

$$\bar{\psi}'(\mathbf{x}')\gamma_5\gamma^{\nu}\psi'(\mathbf{x}') = \det(\Lambda)\Lambda^{\nu}_{\ \mu}\bar{\psi}(\mathbf{x})\gamma_5\gamma^{\mu}\psi(\mathbf{x})$$
 (pseudo-vector)

(e)

$$\bar{\psi}'(\mathbf{x}')\sigma^{\mu\nu}\psi'(\mathbf{x}') = \Lambda^{\mu}{}_{\alpha}\Lambda^{\nu}{}_{\beta}\bar{\psi}(\mathbf{x})\sigma^{\alpha\beta}\psi(\mathbf{x})$$
 (tensor of rank two)

Here $S = S(\Lambda)$ is the transformation matching the Lorentz transformation Λ in spinor space. hint: Use $\psi'(\mathbf{x}') = S\psi(\mathbf{x})$, and $S^{-1} = \gamma^0 S^{\dagger} \gamma^0$.

3. Decoupling of the Lorentz Algebra (6)

Show the relations given in the lecture

$$[e_k^+, e_l^-] = 0$$
 and $[e_1^{\pm}, e_2^{\pm}] = ie_3^{\pm}$ (plus cycl. permutations) (1)

Note that the objects e_k^{\pm} are defined by

$$e_{k \in \{1,2,3\}}^{\pm} = \frac{1}{2} (i \cdot d_k \pm b_k),$$
 (2)

and b_k and d_k are the infinitesimal boosts and rotations.

 $^{^{1}\}sigma^{\mu\nu} = \frac{i}{2}[\gamma^{\mu}, \gamma^{\nu}], \ \bar{\psi}(p) = \psi^{\dagger}(p)\gamma^{0} \text{ and } \gamma_{5} = i\gamma^{0}\gamma^{1}\gamma^{2}\gamma^{3}$