FQM problem Sheet 14 in WS 2022/2023

Prof. Dr. Andreas Klümper	(kluemper@uni-wuppertal.de	D.10.07)
Svyatoslav Karabin	(karabin@uni-wuppertal.de	D.10.01)

<u>Submission</u>: 01.02.2023, 12:00 in the P.O. Box Karabin on D.10 <u>Discussion</u>: 01.02.2023, 14:00 - 16:00

1. Representation of $\mathfrak{su}(3)$ with maximum weight $2\mu^1$ (10)

We consider the Lie algebra $\mathfrak{su}(3)$ with the two-dimensional Cartan subalgebra \mathfrak{h} generated by the basis elements h_1 and h_2 . As you already know, the roots (\equiv weights of the adjoint representation) are given by $\{\pm \alpha^1, \pm \alpha^2, \pm (\alpha^1 + \alpha^2)\}$, where $\alpha^1 = (\frac{1}{2}, \frac{\sqrt{3}}{2})$ and $\alpha^2 = (\frac{1}{2}, -\frac{\sqrt{3}}{2})$. The weights of the defining representation are $\{\mu^1, \mu^2, -(\mu^1 + \mu^2)\}$, where $\mu^1 = (\frac{1}{2}, \frac{1}{2\sqrt{3}})$ and $\mu^2 = (-\frac{1}{2}, \frac{1}{2\sqrt{3}})$. [Sorry, there is a consistent sign change in μ_2 compared to standard terminology. Following the standard terminology we have: The weights of the defining representation are $\{\mu^1, -\mu^2, \mu^2 - \mu^1\}$, where $\mu^1 = (\frac{1}{2}, \frac{1}{2\sqrt{3}})$ and $\mu^2 = (\frac{1}{2}, -\frac{1}{2\sqrt{3}})$.]

- (a) Construct the representation of $\mathfrak{su}(3)$ with maximum weight $2\mu^1$, i.e. $E_{\alpha^1} |2\mu^1\rangle = E_{\alpha^2} |2\mu^1\rangle = 0^{-1}$.
 - i. From the lecture you know $\frac{\alpha \cdot \mu}{\alpha \cdot \alpha} = -\frac{1}{2}(p-q)$. (What is p and q, respectively?)
 - ii. Similarly, $[E_{\alpha}, E_{-\alpha}] \in \mathfrak{h}$. (lecture)
 - iii. $[E_{\alpha}, E_{\beta}] = 0$ if $\alpha + \beta$ is not a root (and $[E_{\alpha}, E_{\beta}] \simeq E_{\alpha+\beta}$ otherwise)

Hint: Construct new states by application of sutaible E's to the given state. Show the last of the remarks and then use it (among other things) to determine "the p and q" of the new states you construct. Continue the procedure.

2. Tensor product of two representations (10)

We consider the tensor product of two defining representations ([3]) of $\mathfrak{su}(3)$ (\doteq [3] \otimes [3]). This is again a representation of the $\mathfrak{su}(3)$ by componentwise operation:

$$h_{\nu} = h_{1,\nu} + h_{2,\nu} := h_{\nu} \otimes 1 + 1 \otimes h_{\nu}$$
$$E_{\alpha} = E_{1,\alpha} + E_{2,\alpha} := E_{\alpha} \otimes 1 + 1 \otimes E_{\alpha}$$

Show: [3] \otimes [3] decomposes into a 6-dim. representation, which starts from $|\mu^1\rangle \otimes \mu^1 = |2\mu^1\rangle$, and a 3-dim. representation conjugate (i.e. with inverted roots) to [3]: [$\overline{3}$].

¹Normalized basis states to weight μ are written as $|\mu\rangle$,