October 22, 2024

Ex 1: Unitarity of *R*-matrices

Let $R: \mathbb{C}^2 \mapsto \operatorname{End} \mathbb{C}^d \otimes \mathbb{C}^d$ be a solution of the Yang-Baxter equation,

$$R_{12}(\lambda,\mu)R_{13}(\lambda,\nu)R_{23}(\mu,\nu) = R_{23}(\mu,\nu)R_{13}(\lambda,\nu)R_{12}(\lambda,\mu),$$

which is holomorphic in a vicinity of (0,0) in \mathbb{C}^2 and regular in the sense that

 $R(\lambda, \lambda) = P$

where P is the transposition on $\mathbb{C}^d \otimes \mathbb{C}^d$.

Show that the following lemma holds true.

Lemma. Under the above conditions there exists a function $g : \mathbb{C}^2 \mapsto \mathbb{C}$ which is differentiable in a neighbourhood of (0,0), has the properties g(0,0) = 1, $g(\lambda,\mu) = g(\mu,\lambda)$, and unitarizes R, meaning that in a neighbourhood of (0,0)

$$\frac{R_{12}(\lambda,\mu)}{g(\lambda,\mu)}\frac{R_{21}(\mu,\lambda)}{g(\mu,\lambda)} = \mathrm{id} \ .$$

(8 points)

Ex 2: First higher conserved charge and heat current

Let $R(\lambda, \mu)$ be a regular and unitary *R*-matrix and

$$t(\lambda) = \operatorname{tr}_a \left\{ R_{aL}(\lambda, 0) \dots R_{a1}(\lambda, 0) \right\}$$

the associated homogeneous transfer matrix. We have seen in the lecture that

$$\tau(\lambda) = \ln(t^{-1}(0)t(\lambda))$$

is a generating function of conserved charges, meaning that

$$\tau(\lambda) = \lambda I_1 + \lambda^2 I_2 + \dots$$

implies

$$[I_i, I_k] = 0.$$

- (i) We usually write $H = I_1$ and call this quantity (possibly after changing its normalization and adapting some parameters) 'the Hamiltonian'. Express the Hamiltonian in terms of $\check{R} = PR$.
- (ii) Calculate the second conserved charge I_2 in terms of $\check{R} = PR$.
- (iii) How does the expression simplify if R is of difference form, $R(\lambda, \mu) = R(\lambda \mu)$?
- (iv) Let $h = \dot{R}'(0)$ for an R matrix of difference form. Using the Heisenberg equation of motion, obtain $\dot{h}_{j-1,j}$. How is this quantity related to the second conserved charge and what is thus the physical interpretation of I_2 , if R is of difference form?

(10 points)